skip to main content


Search for: All records

Creators/Authors contains: "Filippa, Gianluca"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Tree–grass ecosystems are widely distributed. However, their phenology has not yet been fully characterized. The technique of repeated digital photographs for plant phenology monitoring (hereafter referred as PhenoCam) provide opportunities for long-term monitoring of plant phenology, and extracting phenological transition dates (PTDs, e.g., start of the growing season). Here, we aim to evaluate the utility of near-infrared-enabled PhenoCam for monitoring the phenology of structure (i.e., greenness) and physiology (i.e., gross primary productivity—GPP) at four tree–grass Mediterranean sites. We computed four vegetation indexes (VIs) from PhenoCams: (1) green chromatic coordinates (GCC), (2) normalized difference vegetation index (CamNDVI), (3) near-infrared reflectance of vegetation index (CamNIRv), and (4) ratio vegetation index (CamRVI). GPP is derived from eddy covariance flux tower measurement. Then, we extracted PTDs and their uncertainty from different VIs and GPP. The consistency between structural (VIs) and physiological (GPP) phenology was then evaluated. CamNIRv is best at representing the PTDs of GPP during the Green-up period, while CamNDVI is best during the Dry-down period. Moreover, CamNIRv outperforms the other VIs in tracking growing season length of GPP. In summary, the results show it is promising to track structural and physiology phenology of seasonally dry Mediterranean ecosystem using near-infrared-enabled PhenoCam. We suggest using multiple VIs to better represent the variation of GPP. 
    more » « less
  3. null (Ed.)
    Abstract The leaf economics spectrum 1,2 and the global spectrum of plant forms and functions 3 revealed fundamental axes of variation in plant traits, which represent different ecological strategies that are shaped by the evolutionary development of plant species 2 . Ecosystem functions depend on environmental conditions and the traits of species that comprise the ecological communities 4 . However, the axes of variation of ecosystem functions are largely unknown, which limits our understanding of how ecosystems respond as a whole to anthropogenic drivers, climate and environmental variability 4,5 . Here we derive a set of ecosystem functions 6 from a dataset of surface gas exchange measurements across major terrestrial biomes. We find that most of the variability within ecosystem functions (71.8%) is captured by three key axes. The first axis reflects maximum ecosystem productivity and is mostly explained by vegetation structure. The second axis reflects ecosystem water-use strategies and is jointly explained by variation in vegetation height and climate. The third axis, which represents ecosystem carbon-use efficiency, features a gradient related to aridity, and is explained primarily by variation in vegetation structure. We show that two state-of-the-art land surface models reproduce the first and most important axis of ecosystem functions. However, the models tend to simulate more strongly correlated functions than those observed, which limits their ability to accurately predict the full range of responses to environmental changes in carbon, water and energy cycling in terrestrial ecosystems 7,8 . 
    more » « less
  4. Abstract Research infrastructures play a key role in launching a new generation of integrated long-term, geographically distributed observation programmes designed to monitor climate change, better understand its impacts on global ecosystems, and evaluate possible mitigation and adaptation strategies. The pan-European Integrated Carbon Observation System combines carbon and greenhouse gas (GHG; CO 2 , CH 4 , N 2 O, H 2 O) observations within the atmosphere, terrestrial ecosystems and oceans. High-precision measurements are obtained using standardised methodologies, are centrally processed and openly available in a traceable and verifiable fashion in combination with detailed metadata. The Integrated Carbon Observation System ecosystem station network aims to sample climate and land-cover variability across Europe. In addition to GHG flux measurements, a large set of complementary data (including management practices, vegetation and soil characteristics) is collected to support the interpretation, spatial upscaling and modelling of observed ecosystem carbon and GHG dynamics. The applied sampling design was developed and formulated in protocols by the scientific community, representing a trade-off between an ideal dataset and practical feasibility. The use of open-access, high-quality and multi-level data products by different user communities is crucial for the Integrated Carbon Observation System in order to achieve its scientific potential and societal value. 
    more » « less
  5. null (Ed.)